LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis.

نویسندگان

  • Zufeng Ding
  • Shijie Liu
  • Xianwei Wang
  • Yao Dai
  • Magomed Khaidakov
  • Xiaoyan Deng
  • Yubo Fan
  • David Xiang
  • Jawahar L Mehta
چکیده

AIMS Lectin-like ox-LDL scavenger receptor-1 (LOX-1) and mitochondrial DNA (mtDNA) damage play a key role in a variety of cardiovascular diseases, including atherosclerosis, hypertension, and inflammation. We posited that damaged mtDNA could trigger autophagy and NLRP3 inflammasome activation, and LOX-1 may play a critical role in this process. METHODS AND RESULTS In order to examine this hypothesis, cultured human THP-1 macrophages exposed to lipopolysaccharide (LPS) were applied to study the link between LOX-1, mtDNA damage, autophagy, and NLRP3 inflammasome expression. Our data showed that LPS markedly induced LOX-1 expression, reactive oxygen species (ROS) generation, autophagy, mtDNA damage, and NLRP3 inflammasome. LOX-1 inhibition with a binding antibody or siRNA inhibited ROS generation, autophagy and mtDNA damage, and a decreased expression of NLRP3 inflammasome. To study the LOX-1-NLRP3 inflammasome signalling, we performed studies using ROS inhibitors and an autophagy inducer, and found that both decreased the expression of NLRP3. On the other hand, autophagy inhibitor enhanced the expression of NLRP3 inflammasome. Knockdown of DNase II inhibited autophagy and NLRP3 inflammasome, providing further support for our hypothesis. Finally, we confirmed the relationship between LOX-1, ROS, mtDNA damage, autophagy, and NLRP3 inflammasome activation in primary macrophages. CONCLUSIONS This study based on THP-1 macrophages and primary macrophages indicates that LOX-1-mediated autophagy and mtDNA damage play an essential role in NLRP3 inflammasome activation in inflammatory disease states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ogg1-Dependent DNA Repair Regulates NLRP3 Inflammasome and Prevents Atherosclerosis.

RATIONALE Activation of NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediating interleukin (IL)-1β secretion has emerged as an important component of inflammatory processes in atherosclerosis. Mitochondrial DNA (mtDNA) damage is detrimental in atherosclerosis, and mitochondria are central regulators of the nucleotide-binding domain and leucine...

متن کامل

Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells

Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...

متن کامل

Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation

BACKGROUND Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1beta and IL-18. The most intensively studied inflammasom...

متن کامل

Inhibitory effects of Cheonggukjang extracts on radiation-induced micronucleus formation and inflammasome activation

Background: People are exposed to more radiation than before with the application of radiation technology. Radiation is known to induce damage to cell structure, DNA, chromosomes and nucleus. In this study, we showed that CGJ extract can inhibit radiation-induced chromosomal damage in vivo and NLRP7 inflammasome activation in vitro, suggesting that the compound from CGJ can Be considered as a t...

متن کامل

P 106: Effects of Dimethyl Sulfoxide on NLRP3 Inflammasome and Alzheimer\'s Disease

Alzheimer's disease (AD), the most ordinary form of dementia and extracellular accumulation of Amyloid-β (Aβ) in senile plaques, is an important and a main event in the pathogenesis of AD. Deposition of Aβ Peptide initiates a spectrum of cellular responses that are interposed by the resident neuroimmune cells of the brain, the microglia. Recently, a novel inflammasome signaling&n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 2014